relative recursion - significado y definición. Qué es relative recursion
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es relative recursion - definición

Alpha recursion; Α-recursion theory

Relative velocity         
  • Relative motion man on train
  • Relative velocities between two particles in classical mechanics
VELOCITY OF AN OBJECT OR OBSERVER B IN THE REST FRAME OF ANOTHER OBJECT OR OBSERVER A
Relative motion; Relative speed
The relative velocity \vec{v}_{B\mid A} (also \vec{v}_{BA} or \vec{v}_{B \operatorname{rel} A}) is the velocity of an object or observer B in the rest frame of another object or observer A.
Relative risk         
  • Risk Ratio vs Odds Ratio
IN STATISTICS AND EPIDEMIOLOGY
Relative Risk; Relative risks; Relative chance; Relative probability; Risk ratio; Adjusted relative risk
The relative risk (RR) or risk ratio is the ratio of the probability of an outcome in an exposed group to the probability of an outcome in an unexposed group. Together with risk difference and odds ratio, relative risk measures the association between the exposure and the outcome.
Tail call         
SUBROUTINE THAT CALLS ITSELF AS ITS FINAL ACTION
Tail recursion; Tail recursion modulo cons; Tail-recursive; Tail recursive; Tail call optimization; Tail Recursion; Tail-call optimization; Tailcall; Tail-call optimisation; Tail-call elimination; Tail-recursion; Tail-end recursion; Tail call elimination; Tail recursion elimination; Tail recursion optimization; Tail-recursion optimization; Proper tail recursion; Tail function; Tail recursive function; Tail-recursive function
In computer science, a tail call is a subroutine call performed as the final action of a procedure. If the target of a tail is the same subroutine, the subroutine is said to be tail recursive, which is a special case of direct recursion.

Wikipedia

Alpha recursion theory

In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals α {\displaystyle \alpha } . An admissible set is closed under Σ 1 ( L α ) {\displaystyle \Sigma _{1}(L_{\alpha })} functions, where L ξ {\displaystyle L_{\xi }} denotes a rank of Godel's constructible hierarchy. α {\displaystyle \alpha } is an admissible ordinal if L α {\displaystyle L_{\alpha }} is a model of Kripke–Platek set theory. In what follows α {\displaystyle \alpha } is considered to be fixed.

The objects of study in α {\displaystyle \alpha } recursion are subsets of α {\displaystyle \alpha } . These sets are said to have some properties:

  • A set A α {\displaystyle A\subseteq \alpha } is said to be α {\displaystyle \alpha } -recursively-enumerable if it is Σ 1 {\displaystyle \Sigma _{1}} definable over L α {\displaystyle L_{\alpha }} , possibly with parameters from L α {\displaystyle L_{\alpha }} in the definition.
  • A is α {\displaystyle \alpha } -recursive if both A and α A {\displaystyle \alpha \setminus A} (its relative complement in α {\displaystyle \alpha } ) are α {\displaystyle \alpha } -recursively-enumerable. It's of note that α {\displaystyle \alpha } -recursive sets are members of L α + 1 {\displaystyle L_{\alpha +1}} by definition of L {\displaystyle L} .
  • Members of L α {\displaystyle L_{\alpha }} are called α {\displaystyle \alpha } -finite and play a similar role to the finite numbers in classical recursion theory.
  • Members of L α + 1 {\displaystyle L_{\alpha +1}} are called α {\displaystyle \alpha } -arithmetic.

There are also some similar definitions for functions mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } :

  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursively-enumerable, or α {\displaystyle \alpha } -partial recursive, iff its graph is Σ 1 {\displaystyle \Sigma _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursive iff its graph is Δ 1 {\displaystyle \Delta _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • Additionally, a function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -arithmetical iff there exists some n ω {\displaystyle n\in \omega } such that the function's graph is Σ n {\displaystyle \Sigma _{n}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .

Additional connections between recursion theory and α recursion theory can be drawn, although explicit definitions may not have yet been written to formalize them:

  • The functions Δ 0 {\displaystyle \Delta _{0}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} play a role similar to those of the primitive recursive functions.

We say R is a reduction procedure if it is α {\displaystyle \alpha } recursively enumerable and every member of R is of the form H , J , K {\displaystyle \langle H,J,K\rangle } where H, J, K are all α-finite.

A is said to be α-recursive in B if there exist R 0 , R 1 {\displaystyle R_{0},R_{1}} reduction procedures such that:

K A H : J : [ H , J , K R 0 H B J α / B ] , {\displaystyle K\subseteq A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{0}\wedge H\subseteq B\wedge J\subseteq \alpha /B],}
K α / A H : J : [ H , J , K R 1 H B J α / B ] . {\displaystyle K\subseteq \alpha /A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{1}\wedge H\subseteq B\wedge J\subseteq \alpha /B].}

If A is recursive in B this is written A α B {\displaystyle \scriptstyle A\leq _{\alpha }B} . By this definition A is recursive in {\displaystyle \scriptstyle \varnothing } (the empty set) if and only if A is recursive. However A being recursive in B is not equivalent to A being Σ 1 ( L α [ B ] ) {\displaystyle \Sigma _{1}(L_{\alpha }[B])} .

We say A is regular if β α : A β L α {\displaystyle \forall \beta \in \alpha :A\cap \beta \in L_{\alpha }} or in other words if every initial portion of A is α-finite.